Answer:
Option A
Explanation:
Given
$\eta_{1}=\frac{1}{6}$
According to the question,
$\eta_{1}=\frac{T_{1}-T_{2}}{T_{1}}$
$\frac{T_{1}-T_{2}}{T_{1}}=\frac{1}{6}$......(i)
$\eta_{2}=\frac{T_{1}-(T_{2}-62)}{T_{1}}\Rightarrow 2 \times \eta_{1}=\frac{T_{1}-T_{2}+62}{T_{1}}$
$2\times \frac{1}{6}=\frac{T_{1}-T_{2}-62}{T_{1}}\Rightarrow \frac{1}{3}=\frac{T_{1}-T_{2}+62}{T_{1}}$ .....(ii)
from Eq.(i) we ,get,
$T_{1}-T_{2}=\frac{T_{1}}{6}$
Substituting this value in Eq(11), we get
$ \frac{1}{3}=\frac{\frac{T_{1}}{6}+62}{T_{1}}\Rightarrow \frac{1}{3}= \frac{T_{1}+372}{6T_{1}}$
$6T_{1}=3T_{1}+1116\Rightarrow 3T_{1}=1116 \Rightarrow T_{1}=372 K$
From Eq.(i) , we get
$\frac{372-T_{2}}{372}= \frac{1}{6}$
$6(372- T_{2})=372$
$2232-6T_{2}=372$
$6T_{2}=2232-372$
$6T_{2}=1860$
$T_{2}=\frac{1860}{6}$
$T_{2}=310 K$